## Graphs of Cubic, Quadratic and Linear Functions

## Linear Functions



1. At what angle to the horizontal is the graph $y=1 x$ ?

Move slider $d$ to change the constant 0 in $y=1 x+0$.
2. What happens to the graph ?

Click the Linear button to reset then move slider c to change the gradient of the graph.
Try $y=2 x$ and $\quad y=0.5 x$.
3. How does the steepness of the graph change for different amounts of $x$ ?
4. At what angle to the horizontal is $y=-1 x$ ?
5. How does it differ from $y=1 x$ ?

## Graphs of Cubic, Quadratic and Linear Functions

## Quadratic Functions



Click the Quadratic button to obtain the graph of $y=x^{2}$
Move slider d to change the constant.

1. How does this affect the graph?

Click the Quadratic button to reset. Then move slider $b$ to change the amount of $x^{2}$.
2. How does this affect the graph ? What if there is a negative amount of $x^{2}$ ?

Click the Quadratic button to reset. Then move slider c to change the amount of x .
3. How does this affect the graph ? $y=(x+4)(x-2)$ expands to $y=x^{2}+2 x-8$. Use the sliders to set up this graph.
4. How does the factorized equation relate to where the graph cuts the x axis ? $y=(x+1)(x-7)$ expands to $y=x^{2}-6 x-7$. Use the sliders to set up this graph.
5. How does the factorized equation relate to where the graph cuts the x axis ?
6. Can you see why these relationships occur ?

## Graphs of Cubic, Quadratic and Linear Functions

Cubic Functions


Click the Cubic button to obtain the graph of $y=x^{3}$
Move slider d to change the constant.

1. How does this affect the graph?

Click the Cubic button to reset. Then move slider a to change the amount of $x^{3}$.
2. How does this affect the graph? What if there is a negative amount of $x^{3}$ ?

Click the Cubic button to reset. Then move slider b or slider c.
3. How do the amounts of $x^{2}$ and $x$ affect the graph ?
$y=(x+3)(x+2)(x-1)$ expands to $y=x^{3}+4 x^{2}+1 x-6$. Use sliders to set up this graph.
4. How does the factorized equation relate to where the graph cuts the x axis ? $y=(x+2)(x+2)(x-1)$ expands to $y=x^{3}+3 x^{2}+0 x-4$. Use sliders to set up this graph.
5. How does the factorized equation relate to where the graph cuts the x axis ?
6. Can you see why these relationships occur ?

